On multilinear principal component analysis of order-two tensors
نویسندگان
چکیده
منابع مشابه
A Fast Incremental Multilinear Principal Component Analysis Algorithm
This study establishes the mathematical foundation for a fast incremental multilinear method which combines the traditional sequential Karhunen-Loeve (SKL) algorithm with the newly developed incremental modified fast Principal Component Analysis algorithm (IMFPCA). In accordance with the characteristics of the data structure, the proposed algorithm achieves both computational efficiency and hig...
متن کاملGeneralized Multi-Linear Principal Component Analysis of Binary Tensors
Current data processing tasks often involve manipulation of multi-dimensional objects tensors. In many real world applications such as gait recognition, document analysis or graph mining (with graphs represented by adjacency tensors), the tensors can be constrained to binary values only. To the best of our knowledge at present there is no principled systematic framework for decomposition of bin...
متن کاملMultilinear principal component analysis for face recognition with fewer features
In this study, a method is proposed based on multilinear principal component analysis (MPCA) for face recognition. This method utilized less features than traditional MPCA algorithm without downgrading the performance in recognition accuracy. The experiment results show that the proposed method is more suitable for large dataset, obtaining better computational efficiency. Moreover, when support...
متن کاملTwo stage principal component analysis of color
We introduce a two-stage analysis of color spectra. In the first processing stage, correlation with the first eigenvector of a spectral database is used to measure the intensity of a color spectrum. In the second step, a perspective projection is used to map the color spectrum to the hyperspace of spectra with first eigenvector coefficient equal to unity. The location in this hyperspace describ...
متن کاملMultilinear Low-Rank Tensors on Graphs & Applications
We propose a new framework for the analysis of lowrank tensors which lies at the intersection of spectral graph theory and signal processing. As a first step, we present a new graph based low-rank decomposition which approximates the classical low-rank SVD for matrices and multilinear SVD for tensors. Then, building on this novel decomposition we construct a general class of convex optimization...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrika
سال: 2012
ISSN: 0006-3444,1464-3510
DOI: 10.1093/biomet/ass019